Μαγνητικά Μονόπολα σε Spin Ice Μια εισαγωγή

Παναγόπουλος Γεώργιος, ge19007 Επιβλέπων: Λ. Τσέτσερης

Σεμινάριο - Θέμα Τρίτη, 09/05/2023

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο

Magnetic Monopoles

- Μαγνητισμός στην φύση ιστορικά: Πάντα σε μορφή διπόλων
- Στοιχειώδη σωματίδια με στοιχειώδες μαγνητικό φορτίο:
 Μαγνητικά Μονόπολα Προβλέπονται από αρκετές θεωρίες
- Δεν έχουν παρατηρηθεί
- Μαγνητικά μονόπολα ως quasi-particles, δηλαδή ως αναδυόμενη ιδιότητα συλλογικής συμπεριφοράς πολύπλοκων συστημάτων
- Καθίσταται δυνατή η μέτρηση και η μελέτη τους
- Ανοίγει ο δρόμος για νέες τεχνολογικές εφαρμογές

 Αντισιδηρομαγνητισμός: Γειτονικά spin προτιμούν να είναι αντιπαράλληλα

- Για δεδομένη επιλογή των 2 spin, το τρίτο δεν μπορεί να είναι αντιπαράλληλο και στα δύο → frustrated spin
- Δύο ισοενεργειακές καταστάσεις για κάθε γωνία \rightarrow έξι συνολικά ισοενεργειακές καταστάσεις

- Η θεμελιώδης ενεργειακή στάθμη είναι εκφυλισμένη → μη μηδενική εντροπία στους Ο βαθμούς
- Το σύστημα "συμβιβάζεται" σε μια κατάσταση ελάχιστης ενέργειας:

• Τα 3 spin βρίσκονται σε γωνίες 120 $^{\circ}$ και έτσι το ολικό spin είναι 0

• Ας θεωρήσουμε ένα διπλανό τρίγωνο:

- Δύο τρόποι για να ικανοποιείται ο παραπάνω κανόνας
- Κρύσταλλος: Μεγάλος εκφυλισμός της θεμελιώδους κατάστασης

Water Ice

- Στον πάγο, τα άτομα του Ο βρίσκονται στο κέντρο ενός τετραέδρου
- Κάθε άτομο Ο αναπτύσσει ομοιοπολικούς δεσμούς με δύο άτομα Η τα οποία βρίσκονται κοντά του
- Επιπλέον, αναπτύσσει δεσμούς Η με άλλα δύο άτομα νερού. Τα Η αυτά βρίσκονται πιο μακριά, καθώς ο δεσμός είναι ασθενέστερος → Ice Rules

Σχήμα 2: Κρυσταλλική δομή του πάγου ¹

Water Ice

 Ας σκεφτούμε τις πιθανές διατάξεις των ατόμων Η γύρω από ένα άτομο Ο

- Για κάθε τετράεδρο \rightarrow 6 ισοδύναμες καταστάσεις \rightarrow δύο Hείναι κοντά (εντός τετραέδρου) και τα άλλα δύο είναι μακρία (εκτός τετραέδρου)
- Επομένως, έχουμε εκφυλισμό της θεμελιώδους κατάστασης \rightarrow μη-μηδενική εντροπία στους Ο K (Pauling, 1935²)

- Ας φανταστούμε μια τετραεδρική διάταξη όπου γειτονικά spin αλληλεπιδρούν σιδηρομαγνητικά
- Το spin στην θέση S δεν μπορεί να ικανοποιήσει την σιδηρομαγνητική συνθήκη και με τις δύο βάσεις → έχουμε frustration και δύο ισοδύναμες καταστάσεις

 Το σύστημα συμβιβάζεται σε μια κατάσταση όπου τα δύο spin είναι προς το κέντρο του τετραέδρου και τα άλλα δύο προς τα έξω:

- Αντίστοιχο με την θεμελιώδη κατάσταση του πάγου \rightarrow spin ice!

- Εκφυλισμός θεμελιώδους κατάστασης \to μη-μηδενική εντροπία
- Η κρυσταλλική δομή στην οποία έχουμε το παραπάνω είναι αυτή του πυρόχλωρου (pyrochlore)
- Μπορεί να περιγραφεί ως δομή FCC με βάση 4 ατόμων που σχηματίζουν τετράεδρα από υλικά του τύπου A₂B₂O₇
- Τα A, B είναι συνήθως σπάνιες γαίες ή στοιχεία μετάπτωσης.
 Τόσο το A, όσο και το B σχηματίζουν την δομή του πυρόχλωρου
- Χαρακτηριστικά παραδείγματα: $Dy_2Ti_2O_7$ (dysprosium titanate) & $Ho_2Ti_2O_7$ (holmium titanate)

Σχήμα 3: Κρυσταλλική δομή του πυρόχλωρου σε κρύσταλλο spin ice 3

Nearest-Neighbor Spin Ice Model

 Το παραπάνω μοντέλο εκφράζεται μαθηματικά από την παρακάτω Χαμιλτονιανή

$$H = -J \sum_{\langle i,j \rangle} \vec{S}_i \cdot \vec{S}_j \tag{1}$$

όπου J > Ο γιατί θεωρούμε μια σιδηρομαγνητική αλληλεπίδραση

• Για πλέγμα πυρόχλωρου έχουμε ότι $\vec{S}_i \cdot \vec{S}_j = -\frac{1}{3} \sigma_i \sigma_j$ και επομένως⁴:

$$H = \frac{J}{3} \sum_{\langle i,j \rangle} \sigma_i \sigma_j = J_{nn} \sum_{\langle i,j \rangle} \sigma_i \sigma_j$$
(2)

όπου σ_i = \pm 1 \rightarrow και J_{nn} > 0, επομένως έχουμε ένα μοντέλο Ising για αντισιδηρομαγνητισμό!

Nearest-Neighbor Spin Ice Model

- Το μοντέλο αυτό αναπαράγει την εκφυλισμένη θεμελιώδη κατάσταση του spin ice
- Ωστόσο, δεν λαμβάνονται υπόψιν όλα τα δεδομένα, ειδικά για τα $Dy_2Ti_2O_7$ και $Ho_2Ti_2O_7$
- Στην πραγματικότητα, οι αλληλεπιδράσεις μεταξύ πλησιέστερων γειτόνων στα υλικά αυτά είναι αντισιδηρομαγνητικές! (*J_{nn}* < 0). Πώς;
- Αυτό που έχει αγνοηθεί είναι η μεγάλη μαγνητική ροπή που έχουν τα Dy^{+3} και Ho^{+3} , που είναι περίπου $\sim 10 \mu_B$
- Αυτό σημαίνει ότι στην Χαμιλτονιανή εμπεριέχεται και ένας όρος αλληλεπίδρασης διπόλων → Dipolar Spin Ice Model

Dipolar Spin Ice Model

• Μπορούμε να γράψουμε την νέα Χαμιλτονιανή ως⁴

$$H = J_{nn} \sum_{\langle i,j \rangle} \sigma_i \sigma_j + Dr_{nn}^3 \sum_{i>j} \left[\frac{\vec{S}_i \cdot \vec{S}_j}{|\vec{r}_{ij}|^3} - \frac{3(\vec{S}_i \cdot \vec{r}_{ij})(\vec{S}_j \cdot \vec{r}_{ij})}{|\vec{r}_{ij}|^5} \right]$$
(3)

όπου $J_{nn} < 0$ και $D = \frac{\mu_0 \mu^2}{4\pi r_{nn}^3}$, r_{nn} η απόσταση μεταξύ πλησιέστερων γειτόνων και r_{ij} η απόσταση μεταξύ οποιωνδήποτε δύο spin

- Ο δεύτερος όρος είναι ο όρος της αλληλεπίδρασης διπόλων. Για γειτονικά spin, ο όρος αυτός παίρνει την τιμή $D_{nn} = \frac{5D}{3}$
- Επομένως ορίζουμε μια ενεργό κλίμακα ενέργειας μεταξύ γειτονικών spin⁵:

$$J_{eff} = J_{nn} + D_{nn} \tag{4}$$

Dipolar Spin Ice Model

- Αν $J_{eff} > 0$ έχουμε συνολικά σιδηρομαγνητική αλληλεπίδραση, παρόλο που η αλληλεπίδραση πλησιέστερων γειτόνων είναι αντισιδηρομαγνητική ($J_{nn} < 0$)
- Ωστόσο υπάρχει ένα "πρόβλημα": Οι όροι πιο μακρινών γειτόνων είναι σημαντικοί → άρση του εκφυλισμού της θεμελιώδους κατάστασης
- Στην πραγματικότητα, το φαινόμενο αυτό όντως υπάρχει, αλλά είναι τόσο ασθενές που πρακτικά οι καταστάσεις είναι εκφυλισμένες → quasi-degenerate Pauling states
- Στην πραγματικότητα, υπάρχει μια μοναδική θεμελιώδης κατάσταση

Dipolar Spin Ice Model

 Στους ~ 0.18mK αλλαγή φάσης πρώτης τάξης από τις quasi-degenerate καταστάσεις στην θεμελιώδη κατάσταση, όπου υπάρχει τάξη μακράς εμβέ<u>λ</u>ειας → συνολική μαγνήτιση 0

Σχήμα 4: Κάθετη προβολή της θεμελιώδους κατάστασης του Dipolar Spin Ice Model. Η συνολική μαγνήτιση του υλικού είναι Ο

Summary

- Σε κάποια υλικά με την κρυσταλλική δομή του πυρόχλωρου έχουμε spin frustration
- Συμβιβαστικά, η κατάσταση ελάχιστης ενέργειας (θεμελιώδης κατάσταση) του κρυστάλλου υπακούει στα Ice Rules
- To Nearest Neighbor Spin Ice model είναι ένα απλοϊκό μοντέλο που δίνει σχετικά σωστά αποτελέσματα. Το Dipolar Spin Ice model, που εμπεριέχει τις αλληλεπιδράσεις διπόλων, είναι πιο ακριβές
- Που είναι τα μονόπολα;

- Θεωρούμε κάθε διπολική ροπή να είναι ένα ζεύγος μονοπόλου-αντιμονοπόλου (dumbbell)
- Όλα τα μονόπολα/αντιμονόπολα είναι στο κέντρο κάποιου τετραέδρου
- Τα ουδέτερα αυτά σημεία σχηματίζουν δομή αδάμαντα

Σχήμα 5: Dumbbell model: Ένα μαγνητικό δίπολο (spin) μπορεί να ειδωθεί ως δύο αντίθετα μαγνητικά φορτία ⁴

- DSIM: Η διέγερση του συστήματος από μια κατάσταση Pauling αντιστοιχεί σε ένα spin flip το οποίο "σπάει" τα Ice Rules
- DM: Η διέγερση αντιστοιχεί στην εναλλαγή ενός μονοπόλου με ένα αντιμονόπολο:

Σχήμα 6: Dumbbell model: Το μαγνητικό φορτίο εμφανίζεται ως αποτέλεσμα της διέγερσης του κρυστάλλου με αλλαγή ενός spin 4

- Εμφανίζονται συγκεντρώσεις θετικού και αρνητικού μαγνητικού φορτίου σε δύο γειτονικά τετράεδρα, λόγω διεγέρσεων του κρυστάλλου
- Αλλάζοντας την φορά πολλών διαδοχικών spin είναι δυνατόν τα φορτία αυτά να απομακρυνθούν σε μεγάλες αποστάσεις.
- Η διαδρομή των flipped spins που συνδέουν τα δύο αυτά μονόπολα είναι ανάλογη με ένα "Dirac string"
- Τα μονόπολα αλληλεπιδρούν μέσω μιας δύναμης Coulomb⁶:

$$V(r_{ij}) = \begin{cases} \frac{\mu_0}{4\pi} \frac{q_i q_j}{r_{ij}} & r_{ij} \neq 0\\ v_0 q_i q_j & r_{ij} = 0 \end{cases}$$
(5)

όπου το μαγνητικό φορτίο παίρνει τις τιμές $q_m = \pm \frac{\mu}{a_d}$, a_d η απόσταση μεταξύ ουδέτερων θέσεων στο πλέγμα του αδάμαντα

Η Χαμιλτονιανή μπορεί να γραφεί στην μορφή⁶

$$H = \frac{\mu_0}{4\pi} \sum_{\alpha < \beta} \frac{Q_\alpha Q_\beta}{r_{\alpha\beta}} + \frac{\nu_0}{2} \sum_{\alpha} Q_\alpha^2$$
(6)

όπου Q_α είναι το συνολικό μαγνητικό φορτίο σε μια πλεγματική θέση και ν₀ είναι μια κατάλληλη σταθερά που αναπαράγει την αντισιδηρομαγνητική σύζευξη πλησιέστερων γειτόνων

- Είναι τα μονόπολα αυτά ανεξάρτητα(unconfined); Θα πρέπει να μπορούν να κινούνται ελεύθερα στον κρύσταλλο → το κόστος ενέργειας καθώς μεγαλώνει το μήκος του Dirac string θα πρέπει να έχει κάποιο άνω φράγμα
- Αυτό εξασφαλίζεται από το τις quasi-degenerate καταστάσεις Pauling

Magnetic Monopoles in Spin Ice

Dumbbell Model

- Μια κλειστή διαδρομή από flipped spins (worm) οδηγεί σε μια διαφορετική quasi-degenerate κατάσταση του κρυστάλλου
- Η διαδρομή αυτή μπορεί να έχει οποιοδήποτε μήκος και σχήμα, λόγω της γεωμετρίας του κρυστάλλου → υπάρχει ένα άπειρο πλήθος από dirac strings που μπορούν να ενώσουν δύο μονόπολα
- Αυτό καθιστά τα dirac strings ενεργειακά ασήμαντα, και γι'αυτό η αλληλεπίδραση είναι της μορφής Coulomb^{7,8}
- Παρ' όλα αυτά, τα dirac strings είναι παρατηρίσιμα → δεν υπάρχει κβάντωση του μαγνητικού φορτίου

Σχήμα 7: Κλειστή διαδρομή από flipped spins (worm) 9

 Εφόσον η αλληλεπίδραση μεταξύ μαγνητικών μονοπόλων είναι της μορφής Coulomb μόνο, η ενέργεια μεταξύ δύο μονοπόλων σε απόσταση r είναι της μορφής⁶

$$E(r) = 2\frac{2\nu_0\mu^2}{a_d^2} + \frac{\mu_0}{4\pi}\frac{\left(\frac{2\mu}{a_d}\right)\cdot\left(-\frac{2\mu}{a_d}\right)}{r}$$
(7)

όπου ο πρώτος όρος είναι το ενεργειακό κόστος δημιουργίας ενός ζεύγους μονόπολου-αντιμονόπολου και ο δεύτερος όρος είναι η μαγνητική αλληλεπίδραση Coulomb

Για r → ∞ η ενέργεια είναι πεπερασμένη και άρα τα μονόπολα είναι ανεξάρτητα (unconfined)

- Τα συμβατικά ηλεκτρονικά συστήματα ημιαγωγών χρησιμοποιούν την ιδιότητα του φορτίου των ηλεκτρονίων
- Τα spintronics (spin transport electronics) κάνουν χρήση της ιδιότητας του spin και μπορούν να χρησιμοποιηθούν για αποθήκευση πληροφορίας σε μη-πτητική (non-volatile) μνήμη σε συνδυασμό με συμβατικά συστήματα
- Spintronics: καλή επιλογή για σχεδιασμό συστημάτων που μπορούν να εκτελούν υπολογισμούς παράλληλα, αντίστοιχα με τους Κβαντικούς Υπολογιστές ή τον ανθρώπινο εγκέφαλο (neuromorphic computation)¹⁰
- Ta συστήματa spin ice βασίζονται επίσης στο spin \rightarrow ίδιa κατηγορία με spintronics \rightarrow spin-based parallel computation systems

Artificial Spin Ice

- Ορμώμενοι από την έννοια του spin ice, μπορούμε να κατασκευάσουμε παρόμοια συστήματα μεγαλύτερης κλίμακας, τα οποία λέγονται artificial spin ice
- Αποτελούνται από μικρούς σιδηρομαγνήτες της κλίμακας των nm, η μαγνήτιση των οποίων είναι σε μια συγκεκριμένη διεύθυνση
- Μπορούμε να διατάξουμε αυτούς τους σιδηρομαγνήτες σε διάφορες γεωμετρίες, ώστε να έχουμε geometric frustration και να εμφανιστούν μαγνητικά μονόπολα
- Σε τέτοιου είδους συστήματα, μπορούμε να κατασκευάσουμε λογικές πύλες που βασίζονται στην μεταφορά μαγνητικού και όχι ηλεκτρικού φορτίου

Artificial Spin Ice

 Τα συστήματα αυτά λειτουργούν κοντά στο όριο Landauer, δηλαδή έχουν την μέγιστη θεωρητική απόδοση (ελάχιστη κατανάλωση ενέργειας στους υπολογισμούς)¹¹

Σχήμα 8: Artificial Spin Ice: Shakti Lattice ¹²

Artificial Spin Ice

Σχήμα 9: Artificial Spin Ice: tri-layer ASI device¹³

Bibliography

- ¹ C. Nisoli, "Frustration(s) and the ice rule: from natural materials to the deliberate design of exotic behaviors", in (Springer Cham, Nov. 2018), pp. 57–59.
- ² L. Pauling, "The structure and entropy of ice and of other crystals with some randomness of atomic arrangement", Journal of the American Chemical Society **57**, 2680–2684 (1935).
- ³ Mjpgngras, Portion of the pyrochlore lattice showing magnetic moments (arrows) obeying the two-in, two out spin ice rule, Wikipedia, Sept. 2013.
- ⁴ L. Jaubert and P. Holdsworth, "Magnetic monopole dynamics in spin ice", Journal of physics. Condensed matter : an Institute of Physics journal 23, 164222 (2011).

Bibliography

- ⁵ R. G. Melko and M. J. P. Gingras, "Monte carlo studies of the dipolar spin ice model", Journal of Physics: Condensed Matter 16, R1277–R1319 (2004).
- ⁶ C. Castelnovo, R. Moessner, and S. Sondhi, "Spin ice, fractionalization, and topological order", Annual Review of Condensed Matter Physics **3**, 35–55 (2012).
- ⁷ C. Castelnovo, R. Moessner, and S. L. Sondhi, "Magnetic monopoles in spin ice", Nature 451, 42–45 (2008).
- ⁸ C. H. Marrows, "Experimental studies of artificial spin ice", in Spin ice, edited by M. Udagawa and L. Jaubert (Springer International Publishing, Cham, 2021), pp. 455–478.
- ⁹ L. Jaubert, "Topology of the vacuum", in (Oct. 2021), pp. 117–141.
- ¹⁰M. Di Ventra and Y. V. Pershin, "The parallel approach", Nature Physics 9, 200–202 (2013).

Bibliography

¹¹ F. Flicker, The magick of matter the magick of matter, (Profile Books, London, England, Nov. 2022).

- ¹²Y. Lao, F. Caravelli, M. Sheikh, J. Sklenar, D. Gardeazabal,
 J. D. Watts, A. M. Albrecht, A. Scholl, K. Dahmen, C. Nisoli, and
 P. Schiffer, "Classical topological order in the kinetics of artificial spin ice", Nature Physics 14, 723–727 (2018).
- ¹³ W. Hu, Z. Zhang, Y. Liao, Q. Li, Y. Shi, H. Zhang, X. Zhang, C. Niu, Y. Wu, W. Yu, X. Zhou, H. Guo, W. Wang, J. Xiao, L. Yin, Q. Liu, and J. Shen, "Distinguishing artificial spin ice states using magnetoresistance effect for neuromorphic computing", Nature Communications **14**, 2562 (2023).

Ευχαριστώ πολύ για την προσοχή σας!